Chomp

Julia Robinson Mathematics Festival

Chomp

Objective:

The winner is the player who doesn't eat the yucky square.

Rules:

- Players take turns eating chocolate squares.
- When a square is eaten, all squares above and to the right of that square are also eaten.
- The player who is forced to eat the yucky square loses.

Blue must eat the yucky square, so yellow wins!
(1)(B)(

Square Bars

1. Start with a 3×3 chocolate bar and play a few games. Does Player 1 or Player 2 usually win?
2. When it's your turn, are there any shapes that you have a winning strategy for? What about shapes that you're pretty sure mean you will lose?
3. Can you find a strategy that helps Player 1 or Player 2 win every time?
4. Does this same strategy work for 4×4 bars? 5×5 bars? Any $n \times n$ bar?

Narrow Bars

1. Now start with a 2×4 chocolate bar and play a few games. Does Player 1 or Player 2 usually win?
2. When it's your turn, are there any shapes that you have a winning strategy for? What about shapes that you're pretty sure mean you will lose?
3. Can you find a strategy that helps Player 1 or Player 2 win every time?
4. Does this same strategy work for 2×5 bars? 2×6 bars? Any $2 \times n$ bar?

3×4 Bars

1. Now start with a 3×4 chocolate bar and play a few games. Does Player 1 or Player 2 usually win?
2. When it's your turn, are there any shapes that you have a winning strategy for? What about shapes that you're pretty sure mean you will lose? (You might recognize some from before!)
3. Can you find a strategy that helps Player 1 or Player 2 win every time? (This is a good deal more complicated than the other bars we've looked at and will likely require careful note-taking!)

Bigger Bars

What can you say about bigger bars? $3 \times n$? 4×5 ? $m \times n$?
While you probably found nice strategies for square bars or $2 x n$ bars that weren't too hard to explain to a friend, you might have a little more trouble telling a friend how to win on a 3×4 bar without telling them exactly what to do in a bunch of different cases. Mathematicians still haven't found a nice way to describe winning strategies for the $3 x n$ family of bars, if such "nice" strategies even exist! Are there any other families of chocolate bars you can find nice, somewhat easy-to-explain strategies for?

