FOUR CORNERS

FESTIVAL GUIDE

TABLE OF CONTENTS

Materials and Setup (p. 2)
Activity Leader Guide (p. 3-5)
Student Instructions (p. 6)
Game Board (p. 7)
Table Sign (p. 8)

Julfa Robinson
Mathematios
Festival

Materials and Setup

Per table (assuming 5 pairs of students per table), you will need:

Per Table	Material Preparation	
10 plates (1 per person)		
50 tiles of one color per plate (pairs of students should have different colors)		p. 6
5 copies of Instructions	1-page sheet	p. 7
5 copies of Game Board	1-page sheet	p. 8
1 copy of Table Sign	1-page sheet print on cardstock for sturdiness	

Per Table	Purchasing Materials		
Color square tiles	pack of 400 for $\$ 22.95$		
10 plastic sheet protectors	pack of 100 for $\$ 7.67$	pack of 500 for $\$ 26.99$	These are recommended in order to protect the documents that students will be handling.

Toothpick Triangles
 Activity Leader Guide

Objective

Be the first player to place tiles in their color on the four corners of a square.
Rules:

1. Players take turns placing one tile anywhere on the game board. Players use different colors.
2. The first player to place tiles in their color on the four corners of a square of any size (e.g. $2 \times 2,3 \times 3,4 \times 4$, etc.) wins.

Materials

Each Four Corners table should be prepped for 5 stations of two students. Each station needs:

1. 2 plates with 50 square tiles of one color on each plate. The 2 plates need different colors.
2. Four Corners instructions.
3. Four Corners game boards.

How to Play

Introduce the activity without overexplaining it and without telling what strategies students might want to use. As much as possible, avoid giving away answers. Students should be encouraged to explore, experiment, and learn from their mistakes.

1. Model the rules using the tiles to explain.
2. Play a game with the student.

Standards

1. Make sense of problems and persevere in solving them. ccss.MP1
2. Model with mathematics. ccss.mp4
3. Attend to precision. ccss.MP6

Asking Good Questions

1. Ask questions about confidence.
a. When a student asks you "Is this right?", instead of saying "yes" or "no" right away, ask them how confident they are in their answer. Here are some examples:
i. "Maybe. What do you think? How confident are you?"
ii. "On a scale of $1-5$, how confident are you in your answer?"
b. If a student is not confident in their answer, follow up by asking "What would help you feel more confident in your answer?" or "Why do you not feel confident?" This helps you determine how best to help the student through their explorations.
2. Ask students about choices.
a. When a student is stuck or shows you a wrong answer, instead of jumping in and showing the student the correct answer, start by asking about the choices that the student made along the way. Here are some suggested steps to follow:
i. Start from the beginning.
ii. Ask students to show you what they've tried so far.
iii. When the student gets to a point where they have different choices, ask the student "What other choices can you make here?"
iv. Have the student make a different choice and try to solve the puzzle. This helps the student see that they have the power to make different choices during an activity, and they'll start to do this on their own in the future.
v. If you're familiar with the puzzle or a particular solution, stop the student only when a different choice will help them get to the solution. This will help them feel successful faster without you giving away too much of the answer.
3. Ask students about strategies.
a. If a student is getting into the activity and has been doing it for a while, ask the student if there are any strategies they've come up with to help them solve the puzzle or win the game.
b. Follow up by asking if they think their strategies will work for all puzzles and/or larger puzzles, more complex puzzles, etc. Have the student explore more complex puzzles to test out their strategies.
c. This is a great way to encourage a student to dive deeper into an activity and to start looking for patterns, structure, and proofs.

Four Corners Instructions

Rules:

1. Four Corners is a 2-player game. Each player uses a different color. Players take turns placing one tile of their color into the grid.
2. The first player that makes a square in their color wins.
3. To make a square, a player needs to place one of their tiles on each of the four corners of a square.
4. Squares can be any size (e.g. $2 x 2$ squares, 3×3 squares, 4×4 squares, etc.).
5. Squares with diagonal sides don't count.

In each of the examples below, the purple player won the game.

Example \#3

The purple player made a 3×3 square.

The blue player's square has diagonal sides, which doesn't count.

Four Corners 6x6 Game Board

fe әəגf lof Keld

SUヨNYOO YnOョ

Julia Robinson
Mathematics
Festival

FOUR CORNERS

Play for free at
jrmf.org/puzzle/four-corners

